已知正实数,设
,
.
(1)当时,求
的取值范围;
(2)若以为三角形的两边,第三条边长为
构成三角形,求
的取值范围.
如图,为圆
的直径,点
、
在圆
上,矩形
所在的平面和圆
所在的平面互相垂直,且
,
.
(Ⅰ)求证:平面
;
(Ⅱ)求三棱锥的体积.
某地三所高中校A、B、C联合组织一项活动,用分层抽样方法从三所学校的相关人员中,抽取若干人组成领导小组,有关数据如下表(单位:人)
(Ⅰ)求x,y;
(Ⅱ)若从B、C两校抽取的人中选人任领导小组组长,求这二人都来自学校C的概率.
已知函数.
(Ⅰ)若曲线在
和
处的切线互相平行,求
的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意
,均存在
,使得
,求
的取值范围.
如图,F1,F2是离心率为的椭圆C:
(a>b>0)的左、右焦点,直线
:x=-
将线段F1F2分成两段,其长度之比为1 :3.设A,B是椭圆C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求的取值范围.
某品牌汽车4S店对最近100位采用分期付款的购车者进行统计,统计结果如下表所示:
付款方式 |
分1期 |
分2期 |
分3期 |
分4期 |
分5期 |
频数 |
40 |
20 |
![]() |
10 |
![]() |
已知分3期付款的频率为0.2,4s店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元,分2期或3期付款其利润为1.5万元,分4期或5期付款,其利润为2万元,用Y表示经销一辆汽车的利润。
(Ⅰ)求上表中的值;
(Ⅱ)若以频率作为概率,求事件:“购买该品牌汽车的3位顾客中,至多有一位采用3期付款”的概率
;
(Ⅲ)求Y的分布列及数学期望EY.