(本小题满分10分)
四棱锥P-ABCD中,底面ABCD是正方形,
边长为,PD=
,PD⊥平面ABCD
(1)求证: AC⊥PB ;
(2)求二面角A-PB-D的大小;
(3)求四棱锥外接球的半径.
(4)在这个四棱锥中放入一个球,求球的最大半径;
(1)m为何值时,f(x)=x2+2mx+3m+4.
①有且仅有一个零点;②有两个零点且均比-1大;
(2)若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.
己知等比数列所有项均为正数,首
,且
成等差数列.
(I)求数列的通项公式;
(II)数列的前n项和为
,若
,求实数
的值.
已知数列是等差数列,
(
).
(Ⅰ)判断数列是否是等差数列,并说明理由;
(Ⅱ)如果,
(
为常数),试写出数列
的通项公式;
(Ⅲ)在(Ⅱ)的条件下,若数列得前
项和为
,问是否存在这样的实数
,使
当且仅当
时取得最大值.若存在,求出
的取值范围;若不存在,说明理由.
如图,椭圆的离心率为
,
轴被曲线
截得的线段长等于
的短轴长.
与
轴的交点为
,过坐标原点
的直线
与
相交于点
,直线
分别与
相交于点
.
(Ⅰ)求、
的方程;
(Ⅱ)求证:;
(Ⅲ)记的面积分别为
,若
,求
的取值范围.
已知函数(
,
)在一个周期上的一系列对应值如下表:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(Ⅰ)求的解析式;
(Ⅱ)在△中,
,
为锐角,且
,求△
的面积.