(本小题满分14分)已知函数在
处的切
线方程为
,
(1)若函数在
时有极值,求
的表达式;
(2)在(1)条件下,若函数在
上的值域为
,求m的取值范围;
(3)若函数在区间
上
单调递增,求b的取值范围. [
设函数,若
在点
处的切线斜率为
.
(Ⅰ)用表示
;
(Ⅱ)设,若
对定义域内的
恒成立,
(ⅰ)求实数的取值范围;
(ⅱ)对任意的,证明:
.
设点为圆
上的动点,过点
作
轴的垂线,垂足为
.动点
满足
(其中
,
不重合).
(Ⅰ)求点的轨迹
的方程;
(Ⅱ)过直线上的动点
作圆
的两条切线,设切点分别为
.若直线
与(Ⅰ)中的曲线
交于
两点,求
的取值范围.
如图,垂直平面
,
,
,点
在
上,且
.
(Ⅰ)求证:;
(Ⅱ)若二面角的大小为
,求
的值.
设公比为正数的等比数列的前
项和为
,已知
,数列
满足
.
(Ⅰ)求数列和
的通项公式;
(Ⅱ)是否存在,使得
是数列
中的项?若存在,求出
的值;若不存在,请说明理由.
在中,角
所对的边分别为
,已知
成等比数列,且
.
(Ⅰ)求角的大小;
(Ⅱ)若,求函数
的值域.