(本小题满分12分)
某市场搞国庆促销活动,一个人同时转动如图2所示的两个转盘,记转盘(甲)得到的数
,转盘(乙)
得到的数为,设
为中一等奖、
为中二等奖.
(Ⅰ)求中一等奖的概率; (甲) 图2 (乙)
(Ⅱ)求中二等奖的概率.
已知数列的前
项和为
,且
.
(1)求数列的通项公式;
(2)设,
,求使
成立的最小的正整数
的值.
在中,内角
所对的边分别为
,且
(1)若,求
的值;
(2)若,且
的面积
,求
和
的值.
对某校高一年级学生参加社区服务次数统计,随机抽去了名学生作为样本,得到这
名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表如下:
(1)求出表中的值;
(2)在所取样本中,从参加社区服务的次数不少于次的学生中任选
人,求至少一人参加社区服务次数在区间
内的概率.
分组 |
频数 |
频率 |
![]() |
9 |
0.45 |
![]() |
5 |
n |
![]() |
m |
r |
![]() |
2 |
0.1 |
合计 |
M |
1 |
已知,函数
.
(1)当时,若
,求函数
的单调区间;
(2)若关于的不等式
在区间
上有解,求
的取值范围;
(3)已知曲线在其图象上的两点
,
(
)处的切线分别为
.若直线
与
平行,试探究点
与点
的关系,并证明你的结论.
已知抛物线的焦点为
,点
为抛物线
上的一个动点,过点
且与抛物线
相切的直线记为
.
(1)求的坐标;
(2)当点在何处时,点
到直线
的距离最小?