本题满分10分)2010年6月11日,第十九届世界杯在南非拉开帷幕.比赛前,某网站组织球迷对巴西、西班牙、意大利、英格兰四支夺冠热门球队进行竞猜,每位球迷可从四支球队中选出一支球队,现有三人参与竞猜
(1)若三人中每个人可以选择任一球队,且选择各个球队是等可能的,求四支球队中恰好有两支球队有人选择的概率;
(2)若三人中有一名女球迷,假设女球迷选择巴西队的概率为,男球迷选择巴西队的概率为
,记x为三人中选择巴西队的人数,求x的分布列和期望
(本小题满分14分)
如图6,正方形所在平面与三角形
所在平面相交于
,
平面
,且
,
.
(1)求证:平面
;
(2)求凸多面体的体积.
(本小题满分14分)
设数列的前
项和为
,且对任意的
,都有
,
.
(1)求,
的值;(2)求数列
的通项公式
;(3)证明:
.
(本小题满分14分)
已知点,直线
:
,
为平面上的动点,过点
作直线
的垂线,垂足为
,且
.(1)求动点
的轨迹
的方程;(2)已知圆
过定点
,圆心
在轨迹
上运动,且圆
与
轴交于
、
两点,设
,
,求
的最大值.
(本小题满分14分)已知,函数
,
(其中
为自然对数的底数).(1)求函数
在区间
上的最小值;(2)是否存在实数
,使曲线
在点
处的切线与
轴垂直? 若存在,求出
的值;若不存在,请说明理由.
(本小题满分14分)
如图6,正方形所在平面与圆
所在平面相交于
,线段
为圆
的弦,
垂直于圆
所在平面,垂足
是圆
上异于
、
的点,
,圆
的直径为9.
(1)求证:平面平面
;
(2)求二面角的平面角的正切值.