甲、乙两人各射击一次,击中目标的概率分别是和
。假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响。
(Ⅰ)求甲射击4次,至少1次未击中目标的概率;
(Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;
(Ⅲ)假设连续两次未击中目标,则停止射击。问:乙恰好射击5次后,被中止射击的概率是多少?
(本小题满分12分)已知等比数列满足
(1)求数列的通项公式;
(2)求数列的前
项和
.
已知函数(
是不为零的实数,
为自然对数的底数).
(1)若曲线与
有公共点,且在它们的某一公共点处有共同的切线,求
的值;
(2)若函数在区间
内单调递减,求此时
的取值范围.
如图,已知圆,经过椭圆
的右焦点F及上顶点B,过圆外一点
倾斜角为
的直线
交椭圆于C,D两点,
(Ⅰ)求椭圆的方程;
(Ⅱ)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.
C如图,将边长为2的正方形ABCD沿对角线BD 折成一个直二面角,且EA⊥平面ABD,AE=,
(Ⅰ)若,求证:AB∥平面CDE;
(Ⅱ)求实数的值,使得二面角A-EC-D的大小为60°.
已知是定义在区间
上的奇函数,且
,若
,
时,有
.
(1)判断的单调性,并证明;
(2)若对所有
,
恒成立,求实数t的取值范围.