(本题满分10分) 如下的三个图中,左面的是一个长方体截去一个角所得多面体的直观图,它
的主视图和左视图在右面画出(单位:cm).
(1)按照给出的尺寸,求该多面体的体积;
(2)在所给直观图中连结,证明:
∥面EFG。
如图,已知椭圆的上顶点为
,离心率为
,若不过点
的动直线
与椭圆
相交于
、
两点,且
.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:直线过定点,并求出该定点
的坐标.
已知定点A(0,1)、B(0,-1)、C(1,0),动点P满足·
=k|
|2.
(1) 求动点P的轨迹方程,并说明方程表示的曲线.
(2) 当k=2时,求|2+
|的最大值和最小值
如图,几何体为正四棱锥,几何体
为正四面体.、
(1)求证:;
(2)求与平面
所成角的正弦值.
已知函数
其中
其中,若
相邻两对称轴间的距离不小于
。
(I)求的取值范围;
(Ⅱ)中,
分别是角
的对边,
当最大时,
=1,求
的面积
(本小题满分14分)
从椭圆+
=1(a>b>0)上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,且它的长轴端点A及短轴端点B的连线AB平行于OM.
(Ⅰ)求椭圆的离心率 ;
(Ⅱ)若b=2,设Q是椭圆上任意一点,F2是右焦点,求△F1QF2的面积的最大值;
(Ⅲ)当QF2^AB时,延长QF2与椭圆交于另一点P,若DF1PQ的面积为20(Q是椭圆上的点),求此椭圆的方程。