一学生参加某高校的自主招生考试,须依次参加A、B、C、D、E五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试。已知每一项测试都是相互独立的,该生参加A、B、C、D四项考试不合格的概率均为,参加第五项不合格的概率为。 ⑴求该生被录取的概率;⑵记该生参加考试的项数为,求的分布列和期望。
如图,有一块正方形区域ABCD,现在要划出一个直角三角形AEF区域进行绿化,满足:EF=1米,设角AEF=θ,θ,边界AE,AF,EF的费用为每米1万元,区域内的费用为每平方米4 万元. (1)求总费用y关于θ的函数. (2)求最小的总费用和对应θ的值.
已知为坐标原点,=(),=(1,),. (1)若的定义域为[-,],求y=的单调递增区间; (2)若的定义域为[,],值域为[2,5],求的值.
已知0<x<.,sin(-x)=,求的值.
已知,,且与夹角为120°求 (1);(2);(3)与的夹角
(本小题满分12分)已知. (1)若,求的取值构成的集合. (2)若,求的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号