(本题满分12分) 已知直线(),若点(,)在此直线上,并有, ().(1)求直线的斜率的值;(2)若是数列的前项和,求的通项公式.
已知椭圆,右焦点为,求连接和椭圆上任意一点的线段的中点的轨迹方程.
已知是过点的两条互相垂直的直线,且与双曲线各两个交点,分别为和. (1)求的斜率的取值范围;(2)若,求的方程.
已知抛物线的焦点为,以为圆心,长为半径,在轴上方的半圆交抛物线于不同的两点,,是的中点. ⑴求的值; ⑵是否存在这样的值,使,,成等差数列?
已知直线过坐标原点,抛物线的顶点在原点,焦点在轴正半轴上,若点和点关于的对称点都在上,求直线和抛物线的方程.
如图,是抛物线上上的一点,动弦分别交轴于两点,且. (1)若为定点,证明:直线的斜率为定值; (2)若为动点,且,求的重心的轨迹方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号