(本小题满分10分)
已知平面向量.
(1)求向量的坐标;
(2)当实数为何值时,
与
共线.
(1)已知等差数列{an}的公差d > 0,且是方程
的两根,求数列
通项公式
(2)设,求数列{bn}的前n项和
.
某中学的高二(1)班男同学有名,女同学有
名,老师按照分层抽样的方法组建了一个
人的课外兴趣小组.
(1)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;
(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;
在平面直角坐标系中,以
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
,曲线
的参数方程为
(
为参数,
).
(1)写出直线的直角坐标方程;
(2)求直线与曲线
的交点的直角坐标.
已知在矩阵M对应的变换作用下,点A(1,0)变为A′(1,0),点B(1,1)变为B′(2,1).
(1)求矩阵M;
(2)求,
,并猜测
(只写结果,不必证明).
已知函数,
.
(1)函数的零点从小到大排列,记为数列
,求
的前
项和
;
(2)若在
上恒成立,求实数
的取值范围;
(3)设点是函数
与
图象的交点,若直线
同时与函数
,
的图象相切于
点,且
函数,
的图象位于直线
的两侧,则称直线
为函数
,
的分切线.
探究:是否存在实数,使得函数
与
存在分切线?若存在,求出实数
的值,并写出分切线方程;若不存在,请说明理由.