已知抛物线:
上一点
到其焦点的距离为
.
(I)求与
的值;
(II)设抛物线上一点
的横坐标为
,过
的直线交
于另一点
,交
轴于点
,过点
作
的垂线交
于另一点
.若
是
的切线,求
的最小值.
某企业要建造一个容积为18m3,深为2m的长方体形无盖贮水池,如果池底和池壁每平方米的造价分别为200元和150元,怎样设计该水池可使得能总造价最低?最低总造价为多少?
已知以点C(1,﹣2)为圆心的圆与直线x+y﹣1=0相切.
(1)求圆C的标准方程;
(2)求过圆内一点P(2,﹣)的最短弦所在直线的方程.
在△ABC中,角A,B,C所对的边分别为a,b,c,已知b=3,c=8,角A为锐角,△ABC的面积为6.
(1)求角A的大小;
(2)求a的值.
已知三角形的三个顶点是A(4,0),B(6,6),C(0,2).
(1)求AB边上的高所在直线的方程;
(2)求AC边上的中线所在直线的方程.
设各项为正数的数列的前
和为
,且
满足:
.等比数列
满足:
.
(Ⅰ)求数列,
的通项公式;
(Ⅱ)设,求数列
的前
项的和
;
(Ⅲ)证明:对一切正整数,有
.