游客
题文

(本小题满分15分)已知函数(R)的一个极值点为.
(1) 求的值和的单调区间;
(2)若方程的两个实根为, 函数在区间上单调,求的取值范围。

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

设函数,其中,角的顶点与坐标原点重合,始边与轴非负半轴重合,终边经过点,且.
(1)若点的坐标为(-),求的值;
(2)若点为平面区域上的一个动点,试确定角的取值范围,并求函数的值域.

设命题p:函数的定义域为R;命题q:对一切的实数恒成立,如果命题“p且q”为假命题,求实数a的取值范围.

设函数.
(1)求函数的单调区间;
(2)当时,是否存在整数,使不等式恒成立?若存在,求整数的值;若不存在,请说明理由;
(3)关于的方程上恰有两个相异实根,求实数的取值范围.

某工厂有名工人,现接受了生产型高科技产品的总任务.已知每台型产品由型装置和型装置配套组成,每个工人每小时能加工型装置或型装置.现将工人分成两组同时开始加工,每组分别加工一种装置(完成自己的任务后不再支援另一组).设加工型装置的工人有人,他们加工完型装置所需时间为,其余工人加工完型装置所需时间为(单位:小时,可不为整数).
(1)写出的解析式;
(2)写出这名工人完成总任务的时间的解析式;
(3)应怎样分组,才能使完成总任务用的时间最少?

已知向量.
(1)当时,求的值;
(2)设函数,已知在中,内角的对边分别为,若
,求的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号