14分)某地计划从2006年起,用10年的时间创建50所“标准化学校”,已知该地在2006年投入经费为a万元,为保证计划的顺利落实,计划每年投入的经费都比上一年增加50万元。
(1)求该地第n年的经费投入y(万元)与n(年)的函数关系式;
(2)若该地此项计划的总投入为7250万元,则该地在2006年投入的经费a等于多少?
已知椭圆的离心率为
,一个焦点为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线交椭圆
于
,
两点,若点
,
都在以点
为圆心的圆上,求
的值.
如图,矩形中,
,
.
,
分别在线段
和
上,
∥
,将矩形
沿
折起.记折起后的矩形为
,且平面
平面
.
(Ⅰ)求证:∥平面
;
(Ⅱ)若,求证:
;
(Ⅲ)求四面体体积的最大值.
某校高一年级开设研究性学习课程,()班和(
)班报名参加的人数分别是
和
.现用分层抽样的方法,从中抽取若干名学生组成研究性学习小组,已知从(
)班抽取了
名同学.
(Ⅰ)求研究性学习小组的人数;
(Ⅱ)规划在研究性学习的中、后期各安排次交流活动,每次随机抽取小组中
名同学发言.求
次发言的学生恰好来自不同班级的概率.
在△中,已知
.
(Ⅰ)求角;
(Ⅱ)若,△
的面积是
,求
.
对于数列,定义“
变换”:
将数列
变换成数列
,其中
,且
,这种“
变换”记作
.继续对数列
进行“
变换”,得到数列
,…,依此类推,当得到的数列各项均为
时变换结束.
(Ⅰ)试问和
经过不断的“
变换”能否结束?若能,请依次写出经过“
变换”得到的各数列;若不能,说明理由;
(Ⅱ)求经过有限次“
变换”后能够结束的充要条件;
(Ⅲ)证明:一定能经过有限次“
变换”后结束.