光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为k,通过x块玻璃以后强度为y.
(1)写出y关于x的函数关系式;
(2)通过多少块玻璃以后,光线强度将减弱到原来的以下.(lg3≈0.477 1)
(本小题满分12分)
已知向量a=(1,1),b=(1,0),c满足a·c=0,且|a|=|c|,b·c>0
(1)求向量c;
(2)若映射f:(x,y)→(x′,y′)=xa+yc;
①求映射f下(1,2)的原象;
②若将(x,y)作点的坐标,问是否存在直线使得直线
上任一点在映射f的作用下,仍在直线上,若存在求出的
方程,若不存在说明理由.
(本小题满分10分)
设函数f(x)=2cos2x+2sinxcosx-1(x∈R)的最大值为M,最小正周期为T.
(1)求M、T;
(2)10个互不相等的正数xi满足f(xi)=M,且xi<10π(i=1,2,…,10),求x1+x2+…+x10的值.
(满分10分)某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品还需再向总公司交元(
)的管理费,预计当每件产品的售价为
元(
)时,一年的销售量为
万件.
(1)求分公司一年的利润(万元)与每件产品的售价
的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润最大,
并求出的最大值
(满分10分)已知定义在上的函数
其中
为常数。
(1)若是函数
的一个极值点,求
的值;
(2)若函数在区间
上为增函数,求
的取值范围
(满分10分)设函数
(1) 当时,求函数
的极
值;
(2) 当时,求函数
在定义域内的单调性.