设函数 设
,试比较
与
的大小
2013年全国第十二届全运会由沈阳承办。城建部门计划在浑南新区建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成。已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米。
(1)若设休闲区的长米,求公园ABCD所占面积S关于
的函数
的解析式;
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?
点P是圆上的一个动点,过点P作PD垂直于
轴,垂足为D,Q为线段PD的中点。
(1)求点Q的轨迹方程。
(2)已知点M(1,1)为上述所求方程的图形内一点,过点M作弦AB,若点M恰为弦AB的中点,求直线AB的方程。
已知等差数列的前四项和为10,且
成等比数列
(1)求通项公式
(2)设,求数列
的前
项和
。
(1)若,求
的最大值。
(2)为何值时,直线
和曲线
有两个公共点。
已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点
,又知直线
与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若,求实数k值.