游客
题文

(本小题满分12分)
已知函数
(Ⅰ)求的最小正周期和单调递增区间;
(Ⅱ)求在区间上的最大值和最小值.

科目 数学   题型 解答题   难度 容易
知识点: 多面角及多面角的性质
登录免费查看答案和解析
相关试题

已知抛物线,点P(1,-1)在抛物线C上,过点P作斜率为k1k2的两条直线,分别交抛物线C于异于点P的两点Ax1,y1),Bx2,y2),且满足k1+k2=0.
(I)求抛物线C的焦点坐标;
(II)若点M满足,求点M的轨迹方程.

已知椭圆W的中心在原点,焦点在轴上,离心率为,两条准线间的距离为6. 椭圆W的左焦点为,过左准线与轴的交点任作一条斜率不为零的直线与椭圆W交于不同的两点,点关于轴的对称点为.
(Ⅰ)求椭圆W的方程;
(Ⅱ)求证:();
(Ⅲ)求面积的最大值.

已知圆上的动点,点Q在NP上,点G在MP上,且满足.
(I)求点G的轨迹C的方程;
(II)过点(2,0)作直线,与曲线C交于A、B两点,O是坐标原点,设是否存在这样的直线,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线的方程;若不存在,试说明理由.

已知线段AB过轴上一点,斜率为,两端点A,B到轴距离之差为
(1)求以O为顶点,轴为对称轴,且过A,B两点的抛物线方程;
(2)设Q为抛物线准线上任意一点,过Q作抛物线的两条切线,切点分别为M,N,求证:直线MN过一定点;

有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假若每只灯正常发光的概率为0.5,若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换的面数,用表示更换费用。
(1)求①号面需要更换的概率;
(2)求6个面中恰好有2个面需要更换的概率;
(3)写出的分布列,求的数学期望。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号