(本小题满分14分)
现在要对某个学校今年将要毕业的900名高三毕业生进行乙型肝炎病毒检验,可以利用两种方法.①对每个人的血样分别化验,这时共需要化验900次;②把每个人的血样分成两份,取其中m个人的血样各一份混合在一起作为一组进行化验,如果结果为阴性,那么对这m个人只需这一次检验就够了;如果结果为阳性,那么再对这m个人的另一份血样逐个化验,这时对这m个人一共需要m+1次检验.据统计报道,对所有人来说,化验结果为阳性的概率为0.1.
(1)求当m=3时,一个小组经过一次检验就能确定化验结果的概率是多少?
(2)试比较在第二种方法中,m=4和m=6哪种分组方法所需要的化验次数更少一些?
已知分别是椭圆
的左右焦点,其左准线与
轴相交于点N,并且满足
,设A、B是上半椭圆上满足
的两点,其中
.(1)求此椭圆的方程;(2)求直线AB的斜率的取值范围.
已知函数(1)求
在区间
上的最大值
;(2)若方程
有且只有三个不同的实根,求实数
的取值范围.
平面直角坐标系中,为坐标原点,给定两点
,点
满足
,其中
,且
.(1)求点
的轨迹方程;(2)设点
的轨迹与双曲线
交于
两点,且以
为直径的圆过原点,求证:
为定值;(3)在(2)的条件下,若双曲线的离心率不大于
,求双曲线实轴长的取值范围.
关于的方程
:
.(1)若方程
表示圆,求实数
的范围;(2)在方程
表示圆时,若该圆与直线
相交于
两点,且
,求实数
的值;(3)在(2)的条件下,若定点
的坐标为(1,0),点
是线段
上的动点,求直线
斜率的取值范围.
在中,角
、
、
所对的边分别为
,已知向量
,且
.(1)求角
的大小;(2)若
,求
的最小值.