已知椭圆的离心率为
,
直线与以原点为圆心、以椭圆
的短半轴长为半径的圆相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线
过点F1,且垂直于椭圆的长轴,动直线
垂直
于点P,线段PF2的垂直平分线交
于点M,求点M的轨迹C2的方程;
(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.
已知函数若函数
在x = 0处取得极值.
(1) 求实数的值;
(2) 若关于x的方程在区间[0,2]上恰有两个不同的实数根,求实数
的取值范围;
(3) 证明:对任意的自然数n,有恒成立.
已知函数(其中
)的图象如图所示.
(1) 求函数的解析式;
(2) 设函数,且
,求
的单调区间.
已知函数.
(1) 当时,函数
恒有意义,求实数a的取值范围;
(2) 是否存在这样的实数a,使得函数在区间
上为增函数,并且
的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.
如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1) 证明:BD⊥平面PAC;
(2) 若PA=1,AD=2,求二面角B-PC-A的正切值.
已知等差数列满足:
,
的前n项和为
.
(1)求及
;
(2)已知数列的第n项为
,若
成等差数列,且
,设数列
的前
项和
.求数列
的前
项和
.