已知函数若函数
在x = 0处取得极值.
(1) 求实数的值;
(2) 若关于x的方程在区间[0,2]上恰有两个不同的实数根,求实数
的取值范围;
(3) 证明:对任意的自然数n,有恒成立.
已知函数
(Ⅰ)求的单调递增区间;
(Ⅱ)在锐角△ABC中,角A、B、C的对边分别是、b、c满足
,求
的取值范围.
给定函数
(1)a=-4时,求函数的单调区间;
(2)当时,求函数
的极值点.
已知动点P与双曲线的两个焦点F1,F2的距离之和为4.
(1)求动点P的轨迹C的方程;
(2)若M为曲线C上的动点,以M为圆心,MF2为半径做圆M.若圆M与y轴有两个交点,求点M横坐标的取值范围.
某地兴建一休闲商业广场,欲在如图所示的一块不规则用地规划建成一个矩形的商业楼区,余下作为休闲区域,已知,且AB=BC=2AO=4km,曲线段OC是以O为顶点且开口向上的抛物线的一段,如果要使矩形的相邻两边分别落在AB、BC上,且一个顶点落在曲线段OC上,应如何规划才能使矩形商业楼区的用地面积最大?
已知数列的前n项和为
,且
,
(1)求证:是等差数列;
(2)求;
(3)若