某突发事件,在不采取任何预防措施的情况下发生的概率为,一旦发生,将造成某公司300万元的损失.现有甲、乙两种相互独立的预防措施可供选择,单独采用甲、乙预防措施所需的费用分别为40万元和20万元,采用相应预防措施后此突发事件不发生的概率分别为
和
.若预防方案允许甲、乙两种预防措施单独采用、同时采用或都不采用,请分别计算这几种预防方案的总费用,并指出哪一种预防方案总费用最少.
(注:总费用 = 采取预防措施的费用+发生突发事件损失的期望值)
(本小题满分12分)在3.11日本大地震后对福岛核电站的抢险过程中,海上自卫队准备用
射击的方法引爆从海上漂流过来的一个大型汽油罐,已知只有5发子弹,第一次命中只能使
汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是。
(1)求油罐被引爆的概率;
(2)如果引爆或子弹打光则停止射击,设射击次数
为
,求
的分布列及
(结果用分数表
示)。
(本小题满分12分)已知向量。
(1)若,求
的值;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,且满足
,
求函数的取值范围。
(本小题满分14分)各项为正数的数列的前
项和为
,且满足:
(1)求
;
(2)设函数,求数列
的前
项和
;
(3)设为实数,对满足
的任意正整数
、
、
,不等式
恒成立,求实数的最大值。
.(本小题满分13分)已知函数
(1)试确定的取值范围,使得函数
在
上为单调函数;
(2)当时,判断
的大小,并说明理由;
(3)求证:当时,关于
的方程
在区间
上,总有两个不同的解。
(本小题满分12分)设椭圆的焦点分别为
,
直线交
轴于于点A,且
。
(1)试求椭圆的方程;
(2)过、
分别作互相垂直的两直线与椭圆分别
交于D、E、M、N四点(如图所示),若四边形
DMEN的面积为,求DE的直线方程。