某突发事件,在不采取任何预防措施的情况下发生的概率为,一旦发生,将造成某公司300万元的损失.现有甲、乙两种相互独立的预防措施可供选择,单独采用甲、乙预防措施所需的费用分别为40万元和20万元,采用相应预防措施后此突发事件不发生的概率分别为
和
.若预防方案允许甲、乙两种预防措施单独采用、同时采用或都不采用,请分别计算这几种预防方案的总费用,并指出哪一种预防方案总费用最少.
(注:总费用 = 采取预防措施的费用+发生突发事件损失的期望值)
如图,在组合体中,是一个长方体,
是一个四棱锥.
,
,点
且
.
(Ⅰ)证明:;
(Ⅱ)若,当
为何值时,
.
已知函数f(x)= +lnx的图像在点P(m,f(m))处的切线方程为y="x" ,
设.
(1)求证:当恒成立;
(2)试讨论关于的方程:
根的个数.
已知数列{a}中,a
=2,前n项和为S
,且S
=.
(1)证明数列{an+1-an}是等差数列,并求出数列{an}的通项公式
(2)设bn=,数列{bn}的前n项和为Tn,求使不等式Tn>
对一切n∈N*都成立的最大正整数k的值
如图,是等边三角形,
是等腰直角三角形,
,
交
于
,
.
(Ⅰ)求的值;
(Ⅱ)求.
已知函数满足
;
(1)求常数k的值;(2)若恒成立,求a的取值范围.