(本小题满分14分)
在平面直角坐标系中,已知圆
和圆
.
(1)若直线过点
,且被圆
截得的弦长为
,求直线
的方程;
(2)在平面内是否存在一点,使得过点
有无穷多对互相垂直的直线
和
,它们分别与圆
和圆
相交,且直线
被圆
截得的弦长的
倍与直线
被圆
截得的弦长相等?若存在,求出所有满足条件的
点的坐标;若不存在,请说明理由.
![]() |
从一副扑克牌(没有大小王)的52张牌中任取两张,求:
(1)两张是不同花色牌的概率;
(2)至少有一张是红心的概率.
某学校成立三个社团,共60人参加,A社团有39人,B社团有33人,C社团有32人,同时只参加A、B社团的有10人,同时只参加A、C社团的有11人,三个社团都参加的有8人.随机选取一个成员.
(1)他至少参加两个社团的概率为多少?
(2)他参加不超过两个社团的概率为多少?
已知集合,在平面直角坐标系中,点
的
,且
,计算
(1)点不在x轴上的概率;
(2)点正好在第二象限的概率.
在箱子里装有10张卡片,分别写有1到10的10个数字,从箱子中任取一张卡片,记下它的读数x,然后再放回箱子中;第二次再从箱子中任意取出一张卡片,记下它的读数y.
求:(1)是10的倍数的概率;
(2)是3的倍数的概率.
平面上画了一些彼此相距2a的平行线,把一枚半径r<a的硬币任意掷在这个平面上,求硬币不与任一条平行线相碰的概率.