若公比为的等比数列
的首项
且满足
.
(Ⅰ)求的值. (Ⅱ)求数列
的前
项和
.
已知椭圆,
为坐标原点,椭圆的右准线与
轴的交点是
.
(1)点在已知椭圆上,动点
满足
,求动点
的轨迹方程;
(2)过椭圆右焦点的直线与椭圆交于点
,求
的面积的最大值
某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,其可见部分如下,据此解答如下问题:
(1)计算频率分布直方图中[80,90)间的矩形的高;
(2)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份试卷的分数在
之间的概率;
(3)根据频率分布直方图估计这次测试的平均成绩.
如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M、N (异于村庄A),要求PM=PN=MN=2(单位:千米).如何设计, 可以使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).
已知实数,且
按某种顺序排列成等差数列.
(1)求实数的值;
(2)若等差数列的首项和公差都为
,等比数列
的首项和公比都为
,数列
和
的前
项和分别为
,且
,求满足条件的自然数
的最大值.
已知椭圆的左右顶点分别为
,离心率
.
(1)求椭圆的方程;
(2)若点为曲线
:
上任一点(
点不同于
),直线
与直线
交于点
,
为线段
的中点,试判断直线
与曲线
的位置关系,并证明你的结论.