(本小题满分12分)
已知铁矿石和
的含铁率为
,冶炼每万吨铁矿石的
的排放量
及每万吨铁矿石的价格
如下表:
|
![]() |
![]() |
![]() |
![]() |
50% |
1 |
3 |
![]() |
70![]() |
0.5 |
6 |
某冶炼厂计划至少生产1.9万吨铁,若要求的排放量不超过
万吨,求所需费用的最小值,并求此时铁矿石
或
分别购买多少万吨.
【2015高考陕西,文18】如图1,在直角梯形中,
,
是
的中点,
是
与
的交点,将
沿
折起到图2中
的位置,得到四棱锥
.
(Ⅰ)证明:平面
;
(Ⅱ)当平面平面
时,四棱锥
的体积为
,求
的值.
【2015高考山东,文18】如图,三棱台中,
分别为
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)若求证:平面
平面
.
【2015高考湖南,文18】(本小题满分12分)如图,直三棱柱的底面是边长为2的正三角形,
分别是
的中点。
(Ⅰ)证明:平面平面
;
(Ⅱ)若直线与平面
所成的角为
,求三棱锥
的体积。
【2015高考湖北,文20】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马中,侧棱
底面
,且
,点
是
的中点,连接
.
(Ⅰ)证明:平面
.试判断四面体
是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;
(Ⅱ)记阳马的体积为
,四面体
的体积为
,求
的值.
【2015高考广东,文18】(本小题满分14分)如图,三角形所在的平面与长方形
所在的平面垂直,
,
,
.
(1)证明:平面
;
(2)证明:;
(3)求点到平面
的距离.