(本小题满分12分)
已知铁矿石和
的含铁率为
,冶炼每万吨铁矿石的
的排放量
及每万吨铁矿石的价格
如下表:
|
![]() |
![]() |
![]() |
![]() |
50% |
1 |
3 |
![]() |
70![]() |
0.5 |
6 |
某冶炼厂计划至少生产1.9万吨铁,若要求的排放量不超过
万吨,求所需费用的最小值,并求此时铁矿石
或
分别购买多少万吨.
(本小题满分10分)选修4-1:几何证明选讲
如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E.证明: AD·DE=2PB2.
已知函数
(Ⅰ)若函数在
上位增函数,求
的取值范围.
(Ⅱ) 求在区间
上的最小值;
(Ⅲ) 若在区间
上恰有两个零点,求
的取值范围.
已知椭圆:
的离心率为
,右顶点
是抛物线
的焦点.直线
:
与椭圆
相交于
,
两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)如果,点
关于直线
的对称点
在
轴上,求
的值.
如图,在四棱锥P—ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD =" CD" =" 2AB" = 2,E为PC的中点,DE = EC
(1)求证:平面
(2)设PA = a,若平面EBD与平面ABCD所成锐二面角的为,求a的值。
六名学生需依次进行身体体能和外语两个项目的训练及考核。每个项目只有一次补考机会,补考不合格者不能进入下一个项目的训练(即淘汰),若每个学生身体体能考核合格的概率是,外语考核合格的概率是
,假设每一次考试是否合格互不影响.
①求某个学生不被淘汰的概率.
②求6名学生至多有两名被淘汰的概率
③假设某学生不放弃每一次考核的机会,用表示其参加补考的次数,求随机变量
的分布列和数学期望.