已知的图像与
轴的交点为
,它在
轴右侧的第一个最大值和最小值点分别为
和
(1)求的解析式;
(2)求的单调递增区间
(3)将的图像上所有点的横坐标变为原来的
,再将所得图像向右平移
个单位得函数
的图像,求
的解析式。
(本小题满分10分)设全集U=R,集合,
。
(1)求;
(2)若集合,满足
,求实数
的取值范围。
(本小题满分10分)
如图:假设三角形数表中的第n+1行的第二个数为(n≥1,n∈N*)
(1)归纳出与
的关系式, 并求出
的通项公式;
(2)设,求证:
(本小题满分10分)
如图所示,校园内计划修建一个矩形花坛并在花坛内装置两个相同的喷水器 已知喷水器的喷水区域是半径为5 m的圆 问如何设计花坛的尺寸和两个喷水器的位置,才能使花坛的面积最大且能全部喷到水?
(本小题满分10分)
设数列的前n项和为
,
为等比数列,且
(1)求数列和
的通项公式;
(2)设,求数列
的前n项和Tn.
(本小题满分10分)已知不等式.
(1)当时解此不等式;
(2)若对于任意的实数,此不等式恒成立,求实数
的取值范围。