如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的
倍,
为侧棱
上的点。
(Ⅰ)求证:;
(Ⅱ)若平面
,求二面角
的大小;
(Ⅲ)在(Ⅱ)的条件下,侧棱上是否存在一点
, 使得
平面
。若存在,求
的值;若不存在,试说明理由。
已知数列
中,对任何正整数
,等式
=0都成立,且
,当
时,
;设
.
(Ⅰ)求数列的通项公式;
(Ⅱ)设为数列
的前n项和,
求
的值.
已知二次函数f(x)=ax2+bx+c(a,b,c均为实数),满足a-b+c=0,对于任意实数x都有f (x)-x≥0,并且当x∈(0,2)时,有f (x)≤.
(1)求f (1)的值;
(2)证明:ac≥;
(3)当x∈[-2,2]且a+c取得最小值时,函数F(x)=f (x)-mx (m为实数)是单调的,求证:m≤或m≥
.
设定义在R的函数,
R. 当
时,
取得极大值
,且函数
的图象关于点
对称.
(I)求函数的表达式;
(II)判断函数的图象上是否存在两点,使得以这两点为切点的切线互相垂直,且切点的横坐标在区间
上,并说明理由;
(III)设
,
(
),求证:
.
设,函数
.
(Ⅰ)若是函数
的极值点,求实数
的值;
(Ⅱ)若函数在
上是单调减函数,求实数
的取值范围.
已知函数时,
的值域为
,当
时,的值域为
,依次类推,一般地,当
时,
的值域为
,其中k、m为常数,且
(1)若k=1,求数列的通项公式;
(2)项m=2,问是否存在常数,使得数列
满足
若存在,求k的值;若不存在,请说明理由;
(3)若,设数列
的前n项和分别为Sn,Tn,求
。