(本小题共13分)
在平面直角坐标系中,平面区域
中的点的坐标
满足
,从区域
中随机取点
.
(Ⅰ)若,
,求点
位于第四象限的概率;
(Ⅱ)已知直线与圆
相交所截得的弦长为
,
求的概率.
(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.
(1)若ABBC,CP
PB,求证:CP
PA:
(2)若过点A作直线⊥平面ABC,求证:
//平面PBC.
(本小题满分14分)己知向量 ,
.
(1)若 ,求
的值:
(2)若 ,且
,求
的值.
(本小题满分10分)在平面直角坐标系xOy中,已知抛物 的准线方程为
过点M(0,-2)作抛物线的切线MA,切点为A(异于点O).直线
过点M与抛物线交于两点B,C,与直线OA交于点N.
(1)求抛物线的方程;
(2)试问: 的值是否为定值?若是,求出定值;若不是,说明理由。
(本小题满分10分)某校开设8门校本课程,其中4门课程为人文科学,4门为自然科学,学校要求学生在高中三年内从中选修3门课程,假设学生选修每门课程的机会均等.
(1)求某同学至少选修1门自然科学课程的概率;
(2)已知某同学所选修的3门课程中有1门人文科学,2门自然科学,若该同学通过人文科学课程的概率都是,自然科学课程的概率都是
,且各门课程通过与否相互独立.用
表示该同学所选的3门课程通过的门数,求随机变量
的概率分布列和数学期望。
选修4-5:不等式选讲(本小题满分10分)
若,且
,求
的最小值.