设集合W由满足下列两个条件的数列构成:
①
②存在实数M,使(n为正整数)
(I)在只有5项的有限数列;试判断数列
是否为集合W的元素;
(II)设是等差数列,
是其前n项和,
证明数列
;并写出M的取值范围;
(III)设数列且对满足条件的常数M,存在正整数k,使
求证:
(本小题满分14分)已知.
(1)若时,
恒成立,求
的取值范围;
(2)若,解关于
的不等式
(本小题满分14分)已知各项均为正数的数列满足
,且
,其中
.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列的前
项和为
,令
,其中
,试比较
与
的大小,并加以证明.
(本小题满分14分)设椭圆:
的离心率为
,点
(
,0),
(0,
),原点
到直线
的距离为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线:
与椭圆
相交于
、
不同两点,经过线段
上点
的直线与
轴相交于点
,且有
,
,试求
面积
的最大值.
(本小题满分14分)
某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从种服装商品,
种家电商品,
种日用商品中,选出
种商品进行促销活动.
(Ⅰ)试求选出的种商品中至多有一种是家电商品的概率;
(Ⅱ)商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高元,同时,若顾客购买该商品,则允许有
次抽奖的机会,若中奖,则每次中奖都获得数额为
元的奖券.假设顾客每次抽奖时获奖的概率都是
,若使促销方案对商场有利,则
最少为多少元?
(本小题满分12分)如图,P是平面ADC外的一点,,
,
,
.
(1)求证:是直线
与平面
所成的角
(2)若,求二面角
的余弦值.