已知定义在上的函数
,其中
为常数.
(1)若是函数
的一个极值点,求
的值;
(2)若函数在区
间
上是增函数,求
的取值范围;
(3)若函数,在
处取得最大值,求正数
的取值范围.
本小题满分12分)
在中 ,角
的对边分别为
,且满足
。
(Ⅰ)若求此三角形的面积;
(Ⅱ)求的取值范围.
长方体中,E是BC的中点,M、N分别是AE、
的中点,
.
(1) 求证:平面
(2)求异面直线AE与所成角的余弦值
某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命
(单位:小时)进行了统计,统计结果如下表所示:
分组 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
组数 |
48 |
121 |
208 |
223 |
193 |
165 |
42 |
频率 |
(1)将各组的频率填入表中;
(2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;
(3)该公司某办公室新安装了这种型号的灯管3支,若将上述频率作为概率,试求至少有2支灯管的使用寿命不足1500小时的概率
如图所示的几何体中,已知平面平面
,
,且
,
,
,求证:
甲、乙两篮球运动员互不影响地在同一位置投球,命中率分别为
与
,且乙投球2次均未命中的概率是
. 求:
(1)乙投球的命中率;
(2)甲投球2次,至少命中1次的概率;
(3)若甲、乙二人各投球2次,求两人共命中2次的概率