(满分12分)甲、乙两名同学在高一学年中(相同条件下)都参加数学考试十次,每次考试成绩如下表:
![]() ![]() 同学 |
一 |
二 |
三 |
四 |
五 |
六 |
七 |
八 |
九 |
十 |
甲 |
90 |
50 |
70 |
80 |
70 |
60 |
80 |
60 |
70 |
70 |
乙 |
20 |
40 |
60 |
80 |
70 |
70 |
80 |
90 |
90 |
100 |
请在坐标系中画出甲、乙两同学的成绩折线图,并
从以下不同角度对这次测试结果进行分析。
(1)从平均数和方差相结合看,分析谁的成绩更稳定些;
(2)从平均数和中位数相结合看,分析谁的成绩好些;
(3)从平均数和成绩为90分以上的次数相结合看,分析谁的成绩好些 ;
(4)从折线图上两人成绩分数的走势看,分析谁更有潜力。
【2015高考广东,理18】如图,三角形所在的平面与长方形
所在的平面垂直,
,
,
.点
是
边的中点,点
分别在线段
、
上,且
.
(1)证明:;
(2)求二面角的正切值;
(3)求直线与直线
所成角的余弦值.
如图,在四棱锥 中,
为等边三角形,平面
平面
,
,
,
,
,
为
的中点.
(Ⅰ)求证: ;
(Ⅱ)求二面角 的余弦值;
(Ⅲ)若 平面
,求
的值.
【2015高考新课标1,理18】如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.
(Ⅰ)证明:平面AEC⊥平面AFC;
(Ⅱ)求直线AE与直线CF所成角的余弦值.
【2015高考陕西,理18】(本小题满分12分)如图,在直角梯形
中,
,
,
,
,
是
的中点,
是
与
的交点.将
沿
折起到
的位置,如图
.
(Ⅰ)证明:平面
;
(Ⅱ)若平面平面
,求平面
与平面
夹角的余弦值.
【2015高考湖北,理19】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马中,侧棱
底面
,且
,过棱
的中点
,作
交
于点
,连接
(Ⅰ)证明:.试判断四面体
是否为鳖臑,若是,写出其每个面的直角(只需写
出结论);若不是,说明理由;
(Ⅱ)若面与面
所成二面角的大小为
,求
的值.