(本小题满分12分)
甲、乙两位小学生各有2008年奥运吉祥物“福娃”5个(其中“贝贝”、“晶晶”、“欢欢”、
“迎迎”和“妮妮各一个”),现以投掷一个骰子的方式进行游戏,规则如下:当出现向上的点数是奇数时,甲赢得乙一个福娃;否则乙赢得甲一个福娃,规定掷骰子的次数达9次时,或在此前某人已赢得所有福娃时游戏终止.记游戏终止时投掷骰子的次数为
(1)求掷骰子的次数为7的概率;
(2)求的分布列及数学期望E
.
(本题满分13分)已知数列{an}的前n项和为Sn,且an=(3n+Sn)对一切正整数n成立
(I)证明:数列{3+an}是等比数列,并求出数列{an}的通项公式;
(II)设,求数列
的前n项和Bn;
如图,要计算西湖岸边两景点与
的距离,由于地形的限制,需要在岸上选取
和
两点,现测得
,
,
,
,
,求两景点
与
的距离(精确到0.1km).参考数据:
已知数列{an}满足2an+1=an+an+2 (n∈N*),它的前n项和为Sn,且a3=-6,S6=-30.求数列{an}的前n项和的最小值.
已知函数,(1)求
的值;(2)若
,求
的值域.
已知函数,其中
为实数.(1)若
时,求曲线
在点
处的切线方程;(2)当
时,若关于
的不等式
恒成立,试求
的取值范围.