(本小题满分12分)
已知向量(
为常数且
),函数
在
上的最大值为
.
(Ⅰ)求实数的值;
(Ⅱ)把函数的图象向右平移
个单位,可得函数
的图象,若
在
上为增函数,求
的最大值.
已知函数
.
(Ⅰ)若
时,
,求
的最小值;
(Ⅱ)设数列
的通项
,证明:
.
已知双曲线
的左、右焦点分别为
,离心率为3,直线
与
的两个交点间的距离为
.
(Ⅰ)求
;
(Ⅱ)设过
的直线
与
的左、右两支分别交于
两点,且
,证明:
成等比数列.
甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为
,各局比赛的结束相互独立,第1局甲当裁判.
(Ⅰ)求第4局甲当裁判的概率;
(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.
如图,四棱锥
中,
,
和
都是等边三角形.
(Ⅰ)证明:
;
(Ⅱ)求二面角
的大小.
设
的内角
、
、
的对边分别为
、
、
,
.
(Ⅰ)求
;
(Ⅱ)若
,求
.