游客
题文

(本小题满分12分)已知函数.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)数列满足:,且,记数列的前n项和为
.
(ⅰ)求数列的通项公式;并判断是否仍为数列中的项?若是,请证明;否则,说明理由.
(ⅱ)设为首项是,公差的等差数列,求证:“数列中任意不同两项之和仍为数列中的项”的充要条件是“存在整数,使

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分13分)
过椭圆内一点M(1,1)的弦AB
(1)若点M恰为弦AB的中点,求直线AB的方程;
(2)求过点M的弦的中点的轨迹方程。

(本小题满分13分)
数列
(I)求数列的通项公式;
(II)若的最大值。

(本小题满分13分)
已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.

(本小题满分13分)
已知f(x)=
⑴ 求f(x)的最小正周期和单调增区间;
⑵ 如果三角形ABC中,满足f(A)=,求角A的值.

(本小题满分13分)
已知函数为自然对数的底数)
(1)求的单调区间,若有最值,请求出最值;
(2)是否存在正常数,使的图象有且只有一个公共点,且在该公共点处有共同的切线?若存在,求出的值,以及公共点坐标和公切线方程;若不存在,请说明理由。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号