(本小题满分12分)
已知函数,当
时,有极大值
.
(1) 求的值; (2)求函数
的极小值。
设数列{}的前n项和
=n2,{
}为等比数列,且
=
,
(
-
)=
.
⑴求数列{}和{
}的通项公式;
⑵求数列{}的前n项和。
若一个动点P(x,y)到两个定点A(-1,0)、B(1,0)的距离差的绝对值为定值2a,求点P的轨迹方程,并说明轨迹的形状.
给定两个命题,p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2-x+a=0有实数根。如果p∨q为真命题,p∧q为假命题,求实数a的取值范围
在圆上任取一点
,过点
作
轴的垂线段
,
为垂足,当点
在圆上运动时,线段
的中点
的轨迹为曲线
(Ⅰ)求曲线的方程;
(Ⅱ)过点的直线
与曲线
相交于不同的两点
, 点
在线段
的垂直平分线上,且
,求
的值
设数列的前项n和为
,若对于任意的正整数n都有
.
(1)设,求证:数列
是等比数列,并求出
的通项公式。
(2)求数列的前n项和.