(本小题满分12分)(注意:在试题卷上作答无效)
如图,直角△BCD所在的平面垂直于正△ABC所在的平面,
PA⊥平面ABC,,
为DB的中点,
(Ⅰ)证明:AE⊥BC;
(Ⅱ)若点是线段
上的动点,设平面
与平面
所成的平面角大小为
,当
在
内取值时,求直线PF与平面DBC所成的角的范围。
(本小题满分12分)如图,点A,B是单位圆上的两点,A,B两点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,若点A的坐标为(,
),记∠COA=α.
(Ⅰ)求的值;
(Ⅱ)求cos∠COB的值.
(本小题满分10分)已知.
(Ⅰ)求的值;
(Ⅱ)求的值.
在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
,过点
的直线
的参数方程为
(
为参数),直线
与曲线
相交于
两点.
(Ⅰ)写出曲线的直角坐标方程和直线
的普通方程;
(Ⅱ)若,求
的值.
如图,已知为圆
的一条直径,以端点
为圆心的圆交直线
于
两点,交圆
于
两点,过点
作垂直于
的直线,交直线
于
点.
(Ⅰ)求证:四点共圆;
(Ⅱ)若,求
外接圆的半径.
已知函数(
为常数,
是自然对数的底数),曲线
在点
处的切线与
轴平行.
(Ⅰ)求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,其中
为
的导函数.证明:对任意
.