某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有
,参加过计算机培训的有
,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.
(I)任选1名下岗人员,求该人参加过培训的概率;
(II)任选3名下岗人员,求这3人中至少有2人参加过培养的概率.
已知一个几何体的三视图如图所示.
(1)求此几何体的表面积;
(2)在如图的正视图中,如果点为所在线段中点,点
为顶点,求在几何体侧面上从点
到点
的最短路径的长.
已知圆:
内有一点
,过点
作直线
交圆
于
,
两点.
(1)当经过圆心
时,求直线
的方程;
(2)当弦被点
平分时,写出直线
的方程.[
已知,
.
(1)求和
;
(2)定义且
,求
和
.
已知函数在区间
和
上单调递增,在
上单调递减,其图象与
轴交于
三点,其中点
的坐标为
.
(1)求的值;
(2)求的取值范围;
(3)求的取值范围.
知椭圆的两焦点
、
,离心率为
,直线
:
与椭圆
交于
两点,点
在
轴上的射影为点
.
(1)求椭圆的标准方程;
(2)求直线的方程,使
的面积最大,并求出这个最大值.