某企业准备投产一批特殊型号的产品,已知该种产品的成本
与产量
的函数关系式为
该种产品的市场前景无法确定,有三种可能出现的情况,各种情形发生的概率及产品价格
与产量
的函数关系式如下表所示:
设
分别表示市场情形好、中差时的利润,随机变量
,表示当产量为
,而市场前景无法确定的利润.
(I)分别求利润
与产量
的函数关系式;
(II)当产量
确定时,求期望
;
(III)试问产量
取何值时,
取得最大值.
某中学举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出人的成绩作为样本.对高一年级的
名学生的成绩进行统计,并按
分组,得到成绩分布的频率分布直方图(如图).
(Ⅰ)若规定60分以上(包括60分)为合格,计算高一年级这次知识竞赛的合格率;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此,估计高一年级这次知识竞赛的学生的平均成绩;
(Ⅲ)若高二年级这次知识竞赛的合格率为60%,由以上统计数据填写下面列联表,并问是否有99%的把握认为“这次知识竞赛的成绩与年级有关系”。
高一 |
高二 |
合计 |
|
合格人数 |
|||
不合格人数 |
|||
合计 |
参考数据与公式:
由列联表中数据计算的公式
![]() |
0.10 |
0.05 |
0.010 |
![]() |
2.706 |
3.841 |
6.635 |
临界值表
(本小题满分12分)若函数的图象与直线
相切,相邻切点之间的距离为
.
(Ⅰ)求的值;
(Ⅱ)若点是
图象的对称中心,且
,求点
的坐标.
已知抛物线C的顶点在原点,焦点为F(0,1),且过点A(2,t),
(1)求t的值;
(2)若点P、Q是抛物线C上两动点,且直线AP与AQ的斜率互为相反数,试问直线PQ的斜率是否为定值,若是,求出这个值;若不是,请说明理由.
已知函数在
处取得极值5,
(1)求的值;
(2)求函数的单调递减区间
(3)求函数在区间
上的最大值
在中,角
、
、
所对应的边分别为
、
、
,且满足
(1)求角C的值;(2)若,求
面积的最大值