设 f x = x 3 3 ,对任意实数 t ,记 g t x = t 2 3 x - 2 3 t . (I)求函数 y = f x - g t x 的单调区间; (II)求证:(ⅰ)当 x > 0 时, f x ≥ g t x 对任意正实数 t 成立; (ⅱ)有且仅有一个正实数 x 0 ,使得 g x x 0 ≥ g t x 0 对任意正实数 t 成立.
袋中有红、黄、白三种颜色的球各一个,从中每次取一只,有放回的抽取三次, 求:(1)3只球颜色全相同的概率; (2)3只球颜色不全相同的概率; (3)3只球颜色全不相同的概率.
已知函数 (1)利用“五点法”画出该函数在长度为一个周期上的简图; 列表;
作图: (2)说明该函数的图像可由的图像经过怎样的变换得到.
已知是一个平面内的三个向量,其中=(1,2) (1)若||=,∥,求及·. (2)若||=,且+2与3-垂直,求与的夹角.
(1)求值: (2)已知值.
已知函数在点处的切线方程为. (I)求,的值; (II)对函数定义域内的任一个实数,恒成立,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号