(本小题满分14分)
在长方体中,
,
(1) 求证:∥面
;
(2) 证明:;
(3) 一只蜜蜂在长方体中飞行,求它飞入三棱锥
内的概率.
如图,⊙O过平行四边形ABCT的三个顶点B,C,T,且与AT相切,交AB的延长线于点D.
(1)求证:AT2=BT·AD;
(2)E、F是BC的三等分点,且DE=DF,求∠A.
已知函数f(x)=2ex-ax-2(a∈R)
(1)讨论函数的单调性;
(2)若f(x)≥0恒成立,证明:x1<x2时,
椭圆C:(a>b>0)的离心率为
,P(m,0)为C的长轴上的一个动点,过P点斜率为
的直线l交C于A、B两点.当m=0时,
(1)求C的方程;
(2)证明:为定值.
如图,在直三棱柱ABC-A1B1C1中,点D是BC的中点.
(1)求证:A1B∥平面ADC1;
(2)若AB⊥AC,AB=AC=1,AA1=2,求平面ADC1与ABA1所成二面角的正弦值.
某大学外语系有5名大学生参加南京青奥会翻译志愿者服务,每名大学生都随机分配到奥体中心体操和游泳两个比赛项目(每名大学生只参加一个项目的服务)。
(1)求5名大学生中恰有2名被分配到体操项目的概率;
(2)设X,Y分别表示5名大学生分配到体操、游泳项目的人数,记ξ=|X-Y|,求随机变量ξ的分布列和数学期望E(ξ).