游客
题文

已知圆过点且与圆M:关于直线对称
(1)判断圆与圆M的位置关系,并说明理由;
(2)过点作两条相异直线分别与圆相交于
①若直线与直线互相垂直,求的最大值;
②若直线与直线轴分别交于,且,为坐标原点,试判断直线是否平行?请说明理由.

科目 数学   题型 解答题   难度 较易
知识点: 圆的方程的应用
登录免费查看答案和解析
相关试题

已知矩阵A=有一个属于特征值1的特征向量.
(Ⅰ) 求矩阵A
(Ⅱ) 若矩阵B=,求直线先在矩阵A,再在矩阵B的对应变换作用下的像的方程.

已知函数
(1)若函数存在极值点,求实数b的取值范围;
(2)求函数的单调区间;
(3)当时,令(),()为曲线y=上的两动点,O为坐标原点,能否使得是以O为直角顶点的直角三角形,且斜边中点在y轴上?请说明理由。

已知圆,椭圆
(Ⅰ)若点在圆上,线段的垂直平分线经过椭圆的右焦点,求点的横坐标;
(Ⅱ)现有如下真命题:
“过圆上任意一点作椭圆的两条切线,则这两条切线互相垂直”;
“过圆上任意一点作椭圆的两条切线,则这两条切线互相垂直”.
据此,写出一般结论,并加以证明.

如图,是半圆的直径,是半圆上除外的一个动点,垂直于半圆所在的平面,

⑴证明:平面平面
⑵当三棱锥体积最大时,求二面角的余弦值.

某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:
奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.
(Ⅰ)求1名顾客摸球3次停止摸奖的概率;
(Ⅱ)记为1名顾客摸奖获得的奖金数额,求随机变量的分布列和数学期望.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号