已知圆过点
且与圆M:
关于直线
对称
(1)判断圆与圆M的位置关系,并说明理由;
(2)过点作两条相异直线分别与圆
相交于
、
①若直线与直线
互相垂直,求
的最大值;
②若直线与直线
与
轴分别交于
、
,且
,
为坐标原点,试判断直线
与
是否平行?请说明理由.
求过直线l1:x-2y+3=0与l2:2x+3y-8=0的交点,且与直线l:3x+4y-2=0平行的直线.
直线l在两坐标轴上的截距相等,且P(4,3)到直线l的距离为,求直线l的方程.
试求三条直线ax+y+1=0,x+ay+1=0,x+y+a=0构成三角形的条件.
已知a为实数,求当直线l1:ax+y+1=0与l2:x+y-a=0相交时的交点坐标.
某商品的市场需求量y1(万件)、市场供应量y2(万件)与市场价格x(元/件)分别近似地满足下列关系:y1=-x+70,y2=2x-20.当y1=y2时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量.
(1)求平衡价格和平衡需求量;
(2)若要使平衡需求量增加4万件,政府对每件商品应给予多少元补贴?