(本小题满分13分)已知是定义在[-1,1]上的奇函数,且,若任意的,当 时,总有.(1)判断函数在[-1,1]上的单调性,并证明你的结论;(2)解不等式:;(3)若对所有的恒成立,其中(是常数),试用常数表示实数的取值范围.
已知A={,B={,若BA,求的取值范围
((本小题满分14分) 已知函数满足当,当的最大值为。 (1)求时函数的解析式; (2)是否存在实数使得不等式对于若存在,求出实数 的取值集合,若不存在,说明理由.
((本小题满分13分) 已知椭圆:,为其左、右焦点,为椭圆上任一点,的重心为,内心,且有(其中为实数) (1)求椭圆的离心率; (2)过焦点的直线与椭圆相交于点、,若面积的最大值为3,求椭圆的方程.
((本小题满分12分) 已知四棱锥中平面,且,底面为直角梯形,分别是的中点. (1)求证:// 平面; (2)求截面与底面所成二面角的大小; (3)求点到平面的距离.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号