某射手每次射击击中目标的概率是,且各次射击的结果互不影响.
(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率
(Ⅱ)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率
(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记ξ为射手射击3次后的总得分数,求ξ的分布列
如图,,
是两个小区的所在地,
,
到一条公路
的垂直距离
km,
km,
两端之间的距离为4km.某公交公司将在
之间找一点
,在
处建造一个公交站台.
(1)设,试写出用
表示
正切的函数关系式,并给出
的范围;
(2)能否找到一点,使点
到C,D两小区的距离之和(
)最小.若能,请说明理由,并求出
的值;若不能,也请说明理由.
如图,两块直角三角板拼在一起,已知,
.
(1)若记,
,试用
,
表示向量
、
;
(2)若,求
.
设函数,
为常数
.
(1)若的图象中相邻两对称轴之间的距离不小于
,求
的取值范围;
(2)若的最小正周期为
,且当
时,
的最大值是
,又
,求
的值.
已知在同一平面内,且
.
(1)若,且
,求
的值;
(2)若,且
,求向量
与
的夹角.
一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各一个,这些球除颜色外都相同.
(1)求搅匀后从中任意摸出1个球,恰好是红球的概率;
(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,求至少有一次摸出的球是红球的概率.