在立体图形P-ABCD中,底面ABCD是一个直角梯形,∠BAD=90°,AD∥BC,
AB=BC=a,AD=PA=2a,E是边的中点,且PA⊥底面ABCD。
(1)求证:BE⊥PD
(2)求证:
(3)求异面直线AE与CD所成的角.
(本小题满分13分)已知函数
学科(1)求
;(2)已知数列
满足
,
,求数列
的通项公式;
(3) 求证:
.
(本小题满分12分)已知的三边长
成等差数列,若点
的坐标分别为
.(1)求顶点
的轨迹
的方程;(2)若线段
的延长线交轨迹
于点
,当
时求线段
的垂直平分线
与
轴交点的横坐标的取值范围.
已知函数1)若函数
;
(2)设,若p是q的充分条件,求实数m的取值范围.
(本小题满分12分)已知直四棱柱ABCD—A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1
的中点,M为线段AC1的中点.
(1)求证:直线MF∥平面ABCD;
(2)求证:平面AFC1⊥平面ACC1A1;
(3)求平面AFC1与与平面ABCD所成二面角的大小.
(本小题满分12分)学网某种家用电器每台的销售利润与该电器的无故障使用时间
(单位:年)有关. 若
,则销售利润为
元;若
,则销售利润为
元;若
,则销售利润为
元.设每台该种电器的无故障使用时间
,
及
这三种情况发生的概率分别为
,
,
,叉知
,
是方程
的两个根,且
(1)求
,
,
的值;(2)记
表示销售两台这种家用电器的销售利润总和,求
的期望.