(本小题满分12分)
四川汶川抗震指挥部决定建造一批简易房(房型为长方体状,房高2.5米),前后墙用2.5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(即:钢板的高均为2.5米,用钢板的长度乘以单价就是这块钢板的价格),每米单价:彩色钢板为450元,复合钢板为200元
.房顶用其它材料建造,每平
方米材料费为200元.每套房材料费控制在32000元以内.
(1)设房前面墙的长为
,两侧墙的长为
,所用材料费为
,试用
表示
;
(2)简易房面积的最大值是多少?并求当
最大时
,前面墙的长度应设计为多少米?
设椭圆为正整数,
为常数.曲线
在点
处的切线方程为
.
(Ⅰ)求函数的最大值;
(Ⅱ)证明:.
已知椭圆上的任意一点到它两个焦点
的距离之和为
,且它的焦距为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线与椭圆
交于不同两点
,且线段
的中点
不在圆
内,求实数
的取值范围.
学校游园活动有这样一个游戏节目,甲箱子里装有3个白球、2个黑球;乙箱子里装有
1个白球、2个黑球。这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(Ⅰ)求在一次游戏中:
①摸出3个白球的概率;
②获奖的概率;
(Ⅱ)求在两次游戏中获奖次数的分布列及数学期望
.
如图,直三棱柱中,
,
,
是棱
的中点.
(Ⅰ)证明:;
(Ⅱ)求二面角的余弦值。
已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)记得内角
的对应边为
,若
求
的值.