(本小题满分14分)如图:直平行六面体ABCD-A1B1C1D1,底面ABCD是边长为2a的菱形,∠BAD=600,E为AB中点,二面角A1-ED-A为600
(I)求证:平面A1ED⊥平面ABB1A1;
(II)求二面角A1-ED-C1的余弦值;
(III)求点C1到平面A1ED的距离。
(本小题共12分)
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=
.
(1)求证:平面PQB⊥平面PAD;
(2)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值.
(本小题共12分)
现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
月收入(单位百元) |
[15,25![]() |
[25,35![]() |
[35,45![]() |
[45,55![]() |
[55,65![]() |
[65,75![]() |
频数 |
5 |
10 |
15 |
10 |
5 |
5 |
赞成人数 |
4 |
8 |
12 |
5 |
2 |
1 |
(1)由以上统计数据填下面2乘2列联表并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令” 的态度有差异;
月收入不低于55百元的人数 |
月收入低于55百元的人数 |
合计 |
|
赞成 |
![]() |
![]() |
|
不赞成 |
![]() |
![]() |
|
合计 |
(2)若对在[15,25) ,[25,35)的被调查中各随机选取两人进行追踪调查,记选中的4人中不赞成“楼市限购令”人数为 ,求随机变量
的分布列。
附:
(本小题共12分)
已知△ABC的角A,B,C的对边依次为a,b,c,若满足,
(1)求∠C大小;
(2)若c=2,且△ABC为锐角三角形,求a+b取值范围。
已知函数
(1)求函数的单调区间和值域。
(2)设,求函数
,若对于任意
,总存在
,使得
成立,求实数
的取值范围。
已知椭圆的右焦点为
,离心率
,椭圆
上的点到
距离的最大值为
,直线
过点
与椭圆
交于不同的两点
。
(1)求椭圆的方程。
(2)若,求直线
的方程。