(本小题满分10分)一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:f1(x)=x,f2(x)=x2,f3(x)=x3,f4(x)=sinx,f5(x)=cosx,f6(x)=2.
(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;
(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
如图2,建立平面直角坐标系,
轴在地平面上,
轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程
表示的曲线上,其中
与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标不超过多少时,炮弹可以击中它?请说明理由.
已知等差数列满足:
.
(1)求的通项公式;
(2)若,求数列
的前n项和
.
已知a,b,c分别为△ABC三个内角A,B,C的对边,c = asinC-ccosA.
(1)求A;
(2)若a=2,△ABC.的面积为,求b,c.
已知公差不为零的等差数列满足
,且
成等比数列。
(1)求数列的通项公式
;
(2)设为数列
的前n项和,求数列
的前n项和
已知函数。
(1)求的定义域及最小正周期;
(2)求的单调递减区间.