(本小题满分14分)已知椭圆的离心率为
,短轴一个端点到右焦点的距离为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆
交于
两点,坐标原点
到直线
的距离为
,求
面积的最大值.
(本小题满分12分)已知数列是等差数列,
,
,
为数列
的前
项和
(1)求和
;(2)若
,求数列
的前
项和
(本小题满分14分)
已知数列是首项为
,公差为
的等差数列,
是首项为
,公比为
的等比数列,且满足
,其中
.
(Ⅰ)求的值;
(Ⅱ)若数列与数列
有公共项,将所有公共项按原顺序排列后构成一个新数列
,求数列
的通项公式;
(Ⅲ)记(Ⅱ)中数列的前项之和为
,求证:
((本小题满分14分)
设椭圆的左右焦点分别为
、
,
是椭圆
上的一点,
,坐标原点
到直线
的距离为
.
(1)求椭圆的方程;
(2)设是椭圆
上的一点,过点
的直线
交
轴于点
,交
轴于点
,若
,求直线
的斜率.
(本小题满分14分)
设,函数
.
(Ⅰ)若是函数
的极值点,求实数
的值;
(Ⅱ)若函数在
上是单调减函数,求实数
的取值范围.
(本小题满分14分)
如图,四棱锥的底面
为菱形,
平面
,
,
、
分别为
、
的中点。
(I)求证:平面
;
(Ⅱ)求三棱锥
的体积;
(Ⅲ)求平面与平面
所成的锐二面角大小的余弦值。