某化工厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示).如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/米2,水池所有墙的厚度忽略不计,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价。
在中,
是三角形的三内角,
是三内角对应的三边,已知
成等差数列,
成等比数列
(Ⅰ)求角的大小;
(Ⅱ)若,求
的值.
在数列中,
,当
时,
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列
的前
项和
.
已知二次函数的二次项系数为
,且不等式
的解集为
,
(1)若方程有两个相等的根,求
的解析式;
(2)若的最大值为正数,求
的取值范围.
(1)若,
,求证:
;
(2)已知,且
, 求证:
与
中至少有一个小于2.