某高级中学共有学生2000名,各年级男、女生人数如下表:
|
高一年级 |
高二年级 |
高三年级 |
女生 |
373 |
x |
y |
男生 |
377 |
370 |
z |
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.
(Ⅰ)求x的值;
(Ⅱ)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名?
在数列{}中,
,并且对任意
都有
成立,令
.
(Ⅰ)求数列{}的通项公式;
(Ⅱ)设数列{}的前n项和为
,证明:
甲和乙参加智力答题活动,活动规则:①答题过程中,若答对则继续答题;若答错则停止答题;②每人最多答3个题;③答对第一题得10分,第二题得20分,第三题得30分,答错得0分。已知甲答对每个题的概率为,乙答对每个题的概率为
。
(1)求甲恰好得30分的概率;
(2)设乙的得分为,求
的分布列和数学期望;
(3)求甲恰好比乙多30分的概率.
在中,角
所对的边为
,已知
(1)求的值;
(2)若的面积为
,求
的值
已知函数,
(1)求该函数的最小正周期和最小值;
(2)若,求该函数的单调递增区间。
(本小题满分14分)
已知函数.
(1)求证:函数在
上是单调递增函数;
(2)当时,求函数在
上的最值;
(3)函数在
上恒有
成立,求
的取值范围.