甲乙两个盒子里各放有标号为1,2,3,4的四个大小形状完全相同的小球,从甲盒中任取一小球,记下号码后放入乙盒,再从乙盒中任取一小球,记下号码
,设随机变量
(1)求的概率;
(2)求随机变量X的分布列及数学期望。
利用随机模拟方法计算图3-3-14中阴影部分(y=x3和x=2以及x轴所围成的部分)的面积.
图3-3-14
向图3-3-13中所示正方形内随机地投掷飞标,
图3-3-13
求飞标落在阴影部分的概率.
已知双曲线=1的右焦点是F,右顶点是A,虚轴的上端点是B,
·
=6-4
,∠BAF=150°.
(1)求双曲线的方程;
(2)设Q是双曲线上的点,且过点F、Q的直线l与y轴交于点M,若+2
=0,求直线l的斜率.
过点M(0,1)作直线,使它被直线l1:x-3y+10=0和l2:2x+y-8=0所截得的线段恰好被M平分,求此直线方程.
在直角坐标系xOy中,椭圆C1: ="1" (a>b>0)的左、右焦点分别为F1、F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
.
(1)求C1的方程;
(2)平面上的点N满足=
+
,直线l∥MN,且与C1交于A、B两点,若
·
=0,求直线l的方程.