已知函数(
)
(1)若,求
在
上的最小值和最大值;
(2)如果对
恒成立,求实数
的取值范围
设函数,若
时,
有极小值
,
(1)求实数的取值;
(2)若数列中,
,求证:数列
的前
项和
;
(3)设函数,若
有极值且极值为
,则
与
是否具有确定的大小关系?证明你的结论.
定义:对于两个双曲线,
,若
的实轴是
的虚轴,
的虚轴是
的实轴,则称
,
为共轭双曲线.现给出双曲线
和双曲线
,其离心率分别为
.
(1)写出的渐近线方程(不用证明);
(2)试判断双曲线和双曲线
是否为共轭双曲线?请加以证明.
(3)求值:.
2013年我国汽车拥有量已超过2亿(目前只有中国和美国超过2亿),为了控制汽车尾气对环境的污染,国家鼓励和补贴购买小排量汽车的消费者,同时在部分地区采取对新车限量上号.某市采取对新车限量上号政策,已知2013年年初汽车拥有量为(
=100万辆),第
年(2013年为第1年,2014年为第2年,依次类推)年初的拥有量记为
,该年的增长量
和
与
的乘积成正比,比例系数为
其中
=200万.
(1)证明:;
(2)用表示
;并说明该市汽车总拥有量是否能控制在200万辆内.
长沙市某中学在每年的11月份都会举行“社团文化节”,开幕式当天组织举行大型的文艺表演,同时邀请36名不同社团的社长进行才艺展示.其中有的社长是高中学生,
的社长是初中学生,高中社长中有
是高一学生,初中社长中有
是初二学生.
(1)若校园电视台记者随机采访3位社长,求恰有1人是高一学生且至少有1人是初中学生的概率;
(2)若校园电视台记者随机采访3位初中学生社长,设初二学生人数为,求
的分布列及数学期望
.
如图,在直三棱柱(侧棱和底面垂直的棱柱)中,平面
侧面
,
,
,且满足
.
(1)求证:;
(2)求点的距离;
(3)求二面角的平面角的余弦值.